Sequences - Answer Key

Find the general term of the sequences where the first term corresponds to n=1.

1.
$$-1, 5, -7, 17, \dots$$

$$a_n = (-2)^n + 1$$

6.
$$\frac{11}{9}$$
, $\frac{21}{19}$, $\frac{31}{29}$, $\frac{41}{39}$,

$$a_n = \frac{10n+1}{10n-1}$$

$$2. 0, -2, -6, -12, \dots$$

$$a_n = n - n^2$$

7.
$$\frac{2}{1}, \frac{2^4}{2}, \frac{2^9}{3}, \frac{2^{16}}{4}, \dots$$

$$a_n = \frac{2^{n^2}}{n}$$

3.
$$\frac{\sin 2}{1}$$
, $\frac{\sin 4}{3!}$, $\frac{\sin 6}{5!}$, $\frac{\sin 8}{7!}$,

$$a_n = \frac{\sin(2n)}{(2n-1)!}$$

8.
$$\frac{-2!}{3}$$
, $\frac{3!}{5}$, $\frac{-4!}{7}$, $\frac{5!}{9}$

$$a_n = (-1)^{n+1} \frac{(n+1)!}{2n+1}$$

4.
$$\frac{1}{2}$$
, $\frac{e}{6}$, $\frac{e^2}{12}$, $\frac{e^3}{20}$,

$$a_n = \frac{e^{n-1}}{n(n+1)}$$

9.
$$2, \sqrt{7}, \sqrt{10}, \sqrt{13}, \dots$$

$$a_n = \sqrt{3n+1}$$

5.
$$-2, \frac{4}{\sqrt{2}}, \frac{-8}{\sqrt{3}}, \frac{16}{\sqrt{4}}, \dots$$

$$a_n = (-1)^n \frac{2^n}{\sqrt{n}}$$

10.
$$\frac{4}{2}$$
, $\frac{7}{4}$, $\frac{12}{6}$, $\frac{19}{8}$,

$$a_n = \frac{n^2 + 3}{2n}$$

©2012 Shmoop University, Inc. All rights reserved. For classroom use only. Want to print this out for your classroom? Go for it. All other reproduction and distribution is prohibited.