

# Convergence of Series I - Answer Key

1. Find the  $n$ th partial sum for the series

$$3 + 2 - 2 + 2 - 2 + \dots$$

$$S_n = 5 \text{ for } n \text{ odd and } 3 \text{ for } n \text{ even.}$$

Why?

No, by the divergent test.

2. Does the series  $3 + 2 - 2 + 2 - 2 + \dots$  converge? Why?

No, because the sequence of partial sums does not converge.

3. Does the series  $6 + 3 + \frac{3}{2} + \frac{3}{2^2} + \dots$  converge? If so, find the sum.

$$6 \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 12.$$

4. Does the series  $-5 + \frac{5}{2} - \frac{5}{3} + \frac{5}{4} - 1 + \dots$  converge? If so, find the sum.

$$-5 \ln(2)$$

5. Does the series  $\sum_{n=0}^{1,578,993,21} ne^{n^2}$  converge?

Why?

Yes, because the series is finite.

6. Does the series  $\sum_{n=10}^{\infty} \frac{3n^3 + 2}{2n^3 - 1}$  converge?

7. Find the  $m$ th partial sum for the series

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}.$$

$$S_m = \frac{3}{4} - \frac{1}{2m} - \frac{1}{2m+2}.$$

8. Does the series  $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$  converge?

Why?

Yes, because  $\lim_{m \rightarrow \infty} S_m = \frac{3}{4}$ .

9. Does  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} + e^{-n}$  converge?

Why?

Yes, because both  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$  and

$\sum_{n=1}^{\infty} e^{-n}$  are convergent.

10. Does the series  $\sum_{n=1}^{\infty} n \sin\left(\frac{1}{n}\right)$  converge? Why?

No, by the divergent test.

---