From 11:00PM PDT on Friday, July 1 until 5:00AM PDT on Saturday, July 2, the Shmoop engineering elves will be making tweaks and improvements to the site. That means Shmoop will be unavailable for use during that time. Thanks for your patience!
We have changed our privacy policy. In addition, we use cookies on our website for various purposes. By continuing on our website, you consent to our use of cookies. You can learn about our practices by reading our privacy policy.
© 2016 Shmoop University, Inc. All rights reserved.

Common Core Standards: Math See All Teacher Resources

High School: Number and Quantity

Vector and Matrix Quantities HSN-VM.B.5a

a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as c<vx, vy> = <cvx, cvy>.

Students should know that multiplying a vector by a scalar is just multiplying a vector by a number. Our end result, though, is still a vector. If we multiply the components of a vector by a scalar, each of the components is multiplied by the scalar. It's sort of like our old friend the distributive property again. We've missed him.

So, what happens if the vector <10, 40> is multiplied by 0.5? Probably what you would have guessed. Each of the components is cut in half, with the result being <5, 20>.

Logically, if we take a force—say a gust of wind or a river current—and multiply it by, say 3, then whatever is effected by that gust or current will go 3 times as far. That's pretty much what all this boils down to.

So what happens if we multiply a vector v = <5, 5> by -1? The result is <-5, -5>. But hold up. If v = <5, 5> and our new vector is <-5, -5>, isn't our new vector just -v

Yes. That's exactly what it is. If we want to change the direction of a vector, all we need to do is multiply it by a negative scalar. Scalars can change both magnitudes and directions. Knock two birds with one stone, or two components with one scalar. (It's not a saying yet, but we're pretty sure it'll catch on.)

Aligned Resources

    More standards from High School: Number and Quantity - Vector and Matrix Quantities