From 11:00PM PDT on Friday, July 1 until 5:00AM PDT on Saturday, July 2, the Shmoop engineering elves will be making tweaks and improvements to the site. That means Shmoop will be unavailable for use during that time. Thanks for your patience!
We have changed our privacy policy. In addition, we use cookies on our website for various purposes. By continuing on our website, you consent to our use of cookies. You can learn about our practices by reading our privacy policy.
© 2016 Shmoop University, Inc. All rights reserved.
Computing Derivatives

Computing Derivatives

At a Glance - I Like Abstract Stuff; Why Should I Care?

When Leibniz created his dy/dx notation, he did mean for dy and dx to be numbers - infinitesimal numbers, that is. An infinitesimal number is a number that's bigger than zero but smaller than every positive real number. Think about that for a minute. If ε is infinitesimal, then ε is greater than zero but smaller than 0.00001, smaller than 0.000001, smaller than 0.00000000000001, etc. No matter how many zeros there are, ε < 0.00...001 

Mathematicians had some trouble with the idea of infinitesimals, because it seemed too imprecise and fuzzy. They used limits instead, and we still define continuity and derivatives in terms of limits. It wasn't until 1966 that a guy named Robinson wrote a book called "Non-standard Analysis" and convinced people that yes, we could do calculus properly with these weird infinitesimal numbers.

People who Shmooped this also Shmooped...