From 11:00PM PDT on Friday, July 1 until 5:00AM PDT on Saturday, July 2, the Shmoop engineering elves will be making tweaks and improvements to the site. That means Shmoop will be unavailable for use during that time. Thanks for your patience!
We have changed our privacy policy. In addition, we use cookies on our website for various purposes. By continuing on our website, you consent to our use of cookies. You can learn about our practices by reading our privacy policy.
© 2016 Shmoop University, Inc. All rights reserved.

The Informal Version Exercises

Example 1

The function f(x) = 4x + 1 is a line, therefore it's continuous everywhere. In particular, it's continuous at x = 5 with f(5) = 21. How must the x-values be restricted if we want to have 20.5< f(x) < 21.5?

Example 2

The function 

is discontinuous at x = 1. How does this function fail the continuous function guarantee?

Example 3

For the given function, value of c, and specified range of f(x), find an appropriate restriction of x that produces the kind of picture we want. 

Remember that there are multiple right answers for each of these. As long as our answer produces the correct sort of graph, it's fine.

Advertisement