Cite This Page
To Go
Continuity of Functions
Continuity of Functions
group rates for schools and districts

Determining Continuity

When we say a function f is continuous, we usually mean it's continuous at every real number. In other words, it's continuous on the interval (-∞, ∞).

Some examples of continuous functions that are continuous at every real number are: polynomials, ex, sin(x), and cos(x).

If we add, subtract, multiply, or compose continuous functions we find new continuous functions. If we take a quotient of continuous functions , this quotient will be continuous on any intervals that do not include places where g is zero.

Next Page: The Informal Version
Previous Page: Continuity on Closed and Half-Closed Intervals

Need help with College?