# Calculus Terms

Get down with the lingo

### Continuity

A function *f*(*x*) is continuous at the point *x* = *a* if some small change in *x* results in small changes in the values of *f*(*x*).

### Maximum Value

The largest value(s) that a function assumes on an interval.

### Minimum Value

The smallest value(s) that a function assumes on an interval.

### Left-hand Limit

The value a function *f*(*x*) approaches as the input *x* approaches a specific value from the left.

### Right-hand Limit

The value a function *f*(*x*) approaches as the input *x* approaches a specific value from the right.

### Bounded Function

A function *f*(*x*) is bounded if *f*(*x*) is less than or equal to a constant |*f*(*x*)| <= *M *for all values of *x* in the domain.

### Unbounded Function

A function *f*(*x*) is unbounded if a constant *M *such that |*f*(*x*)| <= *M* does not exist for all values of *x*.