Cite This Page
 
To Go
Definite Integrals
Definite Integrals
group rates for schools and districts
ADVERTISEMENT

Average Value

You know how to take the average of a group of numbers: add all the numbers and divide by how many there are.

What would the "average value" of a function be?

A function like f (x) = x or f (x) = ex takes on infinitely many values. We can't add infinitely many values and divide by \infty.

However, there is a reasonable way to define the average value of a function on an interval.

First we're going to briefly revisit taking averages of numbers. We want to think about averages of numbers in a specific way that will make it easier to understand what the average of a function means.

Next Page: Averages with Numbers
Previous Page: Thinking Backwards

Need help with College?