From 11:00PM PDT on Friday, July 1 until 5:00AM PDT on Saturday, July 2, the Shmoop engineering elves will be making tweaks and improvements to the site. That means Shmoop will be unavailable for use during that time. Thanks for your patience!
We have changed our privacy policy. In addition, we use cookies on our website for various purposes. By continuing on our website, you consent to our use of cookies. You can learn about our practices by reading our privacy policy.
© 2016 Shmoop University, Inc. All rights reserved.
Definite Integrals

Definite Integrals

Trapezoid Sum

All of these summations are starting to feel like Rube Goldberg Machines. Granted, Rube Goldberg Machines are awesome, but do we seriously need this many methods to sum up intervals? Trust us, they are all useful in their own way. Just one big one to go; call it the grand finale.

A trapezoid sum is different from a left-hand sum, right-hand sum, or midpoint sum. Instead of drawing a rectangle on each sub-interval, we draw a trapezoid on each sub-interval. We do this by connecting the points on the function at the endpoints of the sub-interval.

First, a note on the area of trapezoids.

For a trapezoid that looks like this,

the area of the trapezoid is the average of the areas of two rectangles.

Thanks to the distributive property, this can be rewritten as

Now we'll explore sums using trapezoids through the examples.

People who Shmooped this also Shmooped...