# Finding Derivatives Using Formulas Exercises

### Example 1

Using the limit definition, what is *f ' *(0) if *f*(*x*) = *x*^{2}?

### Example 2

Using the limit definition, what is *f *' (-1) if *f*(*x*) = 1 – *x*^{2}.

### Example 3

Using the limit definition of the derivative, what is *f* ' (1) if *f*(*x*) = *x*^{3}?

### Example 4

If it exists, use the limit definition to find the derivative of *f* ' (-1) if *f*(*x*) = *x*^{2} –* x.
*

### Example 5

Using the limit definition to find the derivative, if it exists, what is *f '* (1) if ?

### Example 6

Using the limit definition to find the derivative, what is *f '* (0) when ?

### Example 7

Using the limit definition to find the derivative, what is *f ' *(0) when *f*(*x*) = *x*^{1/3}?