From 11:00PM PDT on Friday, July 1 until 5:00AM PDT on Saturday, July 2, the Shmoop engineering elves will be making tweaks and improvements to the site. That means Shmoop will be unavailable for use during that time. Thanks for your patience!
We have changed our privacy policy. In addition, we use cookies on our website for various purposes. By continuing on our website, you consent to our use of cookies. You can learn about our practices by reading our privacy policy.
© 2016 Shmoop University, Inc. All rights reserved.
Differential Equations

Differential Equations

Accuracy and Usefulness of Euler's Method

Things to remember about Euler's Method:

  • Euler's Method gives only approximate values unless the function happens to be a straight line, in which case Euler's Method gives exact values of the function.
      
  • Euler's method does NOT produce a formula. It generates a numerical solution; that is, approximate values of the function at certain points.

The error in an approximation is the difference between the approximation and the real value of the function.

We can only figure out the error if we know the real value of the function.

Sample Problem

Our first examples of Euler's method used the function y that satisfied the IVP

By thinking backwards we can figure out that

y = x2.

Now we can compute the real value of y at 1:

y(1) = (1)2 = 1.

This lets us figure out how bad our approximations were in some earlier examples.

Using a step size of 0.5 we estimated

y(1) ≈ 0.5.

This has an error of 0.5, since it's 0.5 off from the real answer y(1) = 1.

Using a step size of 0.25 we estimated

y(1) ≈ 0.75.

The error here is 0.25.

Using a step size of 0.2 we estimated

y(1) ≈ 0.8.

This has an error of 0.2.

People who Shmooped this also Shmooped...

Advertisement