We have changed our privacy policy. In addition, we use cookies on our website for various purposes. By continuing on our website, you consent to our use of cookies. You can learn about our practices by reading our privacy policy.

# Why the Choice of Antiderivative Doesn't Matter

Some say po-TAY-to, some say po-TAH-to. Some say to-MAY-to, some say to-MAH-to. Some choose to not include a constant when finding an antiderivative. Some do include the constant. Here's why it doesn't matter what we do with the constant.

### Sample Problem

Find .

The simplest antiderivative of 4x3 is x4. Using the FTC with that antiderivative, we get

Now let's try the FTC with a different antiderivative. How about x4 + 3?

Notice how the extra "+ 3"s canceled each other out and we got 15 again. If we used some other antiderivative of 4x3, the same sort of thing would happen.

The moral of the story is that when evaluating a definite integral with the FTC, no matter which antiderivative you use, you should get the same answer every time. Since it doesn't matter which antiderivative you use, you may as well use the simplest one.