From 11:00PM PDT on Friday, July 1 until 5:00AM PDT on Saturday, July 2, the Shmoop engineering elves will be making tweaks and improvements to the site. That means Shmoop will be unavailable for use during that time. Thanks for your patience!

# Choosing an Integration Method Exercises

### Example 1

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 2

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 3

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 4

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 5

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 6

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 7

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 8

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 9

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 10

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 11

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 12

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 13

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 14

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 15

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 16

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 17

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 18

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 19

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 20

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 21

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.

### Example 22

For the integral,
a. Determine whether the integral should be integrated by substitution, parts, partial fractions, or thinking backwards (no fancy techniques required).
b. If you said 'substitution' for part (a), identify u. If you said `parts', identify u and v'. If you said `thinking backwards', go ahead and find the integral.