From 11:00PM PDT on Friday, July 1 until 5:00AM PDT on Saturday, July 2, the Shmoop engineering elves will be making tweaks and improvements to the site. That means Shmoop will be unavailable for use during that time. Thanks for your patience!
We have changed our privacy policy. In addition, we use cookies on our website for various purposes. By continuing on our website, you consent to our use of cookies. You can learn about our practices by reading our privacy policy.
© 2016 Shmoop University, Inc. All rights reserved.
Indefinite Integrals

Indefinite Integrals

In the Real World

We'll be honest: a lot of the mechanical integration methods you're learning here probably won't be that useful in the long run. Once you get out of school and into a real-life situation, you'll get to use computers most of the time.

The most useful aspect of the integration problems isn't the integration. It's the practice you get at figuring out how to attack each new problem and which integration technique to use. This will make you generally better at figuring out what to do when you encounter new types of problems.

The improper integrals are more useful. Improper integrals play a large role in the study of probability, once we get beyond problems like "what is the likelihood of picking a blue sock out of the drawer?" Improper integrals are also used to create the Fourier transform and the Laplace transform, which physicists and engineers use to help solve certain types of differential equations.

People who Shmooped this also Shmooped...