Solve the exponential equation 3^{x} – 5 = 15y + 5 for x

First, isolate the term with x in it: 3^{x} = 15y + 10

Then take the base-3 logarithm of both sides:

log_{3}(3^{x}) = log_{3}(15y + 10)

Simplify, using the rules of logarithms: x = log_{3}(15y + 10)

x = log_{3}(15y+10)