# Local vs. Global Points Exercises

### Example 1

Determine if the function has a global maximum and/or a global minimum.

### Example 2

Determine if the function has a global maximum and/or a global minimum.

### Example 3

Determine if the function has a global maximum and/or a global minimum.

### Example 4

Determine if the function has a global maximum and/or a global minimum.

### Example 5

Determine if the function has a global maximum and/or a global minimum.

### Example 6

Determine if the function has a global maximum and/or a global minimum.

### Example 7

Determine if the function has a global maximum and/or a global minimum.

### Example 8

Determine if the function has a global maximum and/or a global minimum.

### Example 9

Find the global max and global min of the function on the specified interval.

on the interval [-1,1]

### Example 10

Find the global max and global min of the function on the specified interval.

f (x) = x2 + 3x on the interval [-2, 3]

### Example 11

Find the global max and global min of the function on the specified interval.

f (x) = xex on the interval [-2, -1]

### Example 12

Find the global max and global min of the function on the specified interval.

f (x) = sin x on the interval [π, 2π]

### Example 13

Find the global max and global min of the function on the specified interval.

on [-10, 4].

### Example 14

Find where the global max and global min of the function occur (on the specified interval).

f (x) = x2ex on the interval [-5, 1]

### Example 15

Find where the global max and global min of the function occur (on the specified interval).

f (x) = 2x2 + 3x – 2 on the interval [-2, 2].

### Example 16

Find where the global max and global min of the function occur (on the specified interval).

on the interval [-π, π]

### Example 17

Find where the global max and global min of the function occur (on the specified interval).

on the interval [-1, 4]

### Example 18

Find where the global max and global min of the function occur (on the specified interval).

f (x) = 3(x – 2) + 9 on the interval [-5, 5]