# Similar Triangles Terms

## Get down with the lingo

### Angle-Angle Postulate

A rule that says that if two triangles have two pairs of congruent, corresponding angles, then the triangles are totally BFFs—err, similar.### Center Of Dilation

### Dilation

### Enlargement

Just like setting the Xerox machine to copy at 150%, an enlargement is when your dilation results in a bigger shape than you started with. The scale factor of the dilation will be more than one.### Image

A shape post-dilation. May or may not be grotesquely over- or under-sized.### Midsegment

A line segment that connects the midpoints of two sides of a triangle. It's half the length of and parallel to the third side.### Preimage

### Proportion

A mathematical statement that establishes equality between two ratios. By calling themselves proportional, ratios proclaim to all that they are equivalent and deserve a nice crusty baguette just as much as the next ratio. "Liberté, égalité, geometré," as Victor Hugo so wisely wrote.### Ratio

A comparison of two quantities, written as a fraction (), with the word "to" in between (3 to 5), or with a colon (9:2). Not to be confused with*CSI: Miami's*Horatio. Yeah!

### Reduction

Like setting the Xerox machine to copy at 50%, when a dilation's scale factor is less than one, it gives you a smaller shape than the one you started with.### Scale Factor

### Side-Angle-Side Postulate

A rule stating that if two triangles have proportional adjacent sides and the angles between them are congruent, then the triangles are similar.### Side-Side-Side Postulate

Yet another rule. This one says that if the three sides of one triangle are proportional to the three sides of another triangle, then the triangles are similar.### Similar

### Similarity Transformation

### Triangle Proportionality Theorem

This theorem claims that if a line is parallel to one side of a triangle, then it splits the other two sides into proportional sections. It seems pretty sure of itself, so we'll trust it.### Triangle Midsegment Theorem

This rule is all about the midsegments…seriously. All it does is sit around all day and define the midsegment (the line segment connecting the midpoints of two sides of a triangle) as being half the length of and parallel to the third side of a triangle.### People who Shmooped this also Shmooped...

Advertisement