Surface Area and Volume
Topics
Introduction to :
If you play basketball, eat oranges, or have eyeballs (which are sort of necessary to read this), you've most likely encountered spheres at some point in your life. They're such common everyday objects so learning how to find their surface area should prove useful...you know, in case you've ever wondered how much peel is actually on an orange.
Before we do that though, we need to talk about the Great Circle of Life.
Er...sort of. A great circle is a circle that has the same center and radius as its sphere. Imagine cutting a sphere exactly in half, creating two hemispheres. The circle we get is a great circle. Circles anywhere else on the sphere aren't that great. They're mediocre.
How does this help us find the surface area? Patience, young grasshopper.
The great circle (with area πr^{2}, obv) covers about a fourth of the sphere. Actually, it covers exactly a fourth of the sphere. That means our surface area for the entire sphere is four times the area of the great circle.
SA = 4πr^{2}
Coolness. We can get started on those surface areas. Hold your applause, please.
Sample Problem
What is the surface area of this sphere?
This shouldn't be a problem. We'll start with our formula.
SA = 4πr^{2}
Our radius is 2 centimeters. That's all we need.
SA = 4π(2 cm)^{2}
SA = 16π ≈ 50.3 cm^{2}
Could it get any simpler? Probably not. Could it get any harder? Unfortunately, always.
Sample Problem
What is the surface area of this hemisphere?
This time, our formula is going to be a smidgeon more complicated. We're looking for the surface area of the hemisphere, which is half the surface area of the sphere plus the area of the great circle.
SA = 2πr^{2} + πr^{2} = 3πr^{2}
Our diameter is 10 inches, so our radius is 5 inches.
SA = 3πr^{2}
SA = 3π(5 in)^{2}
SA = 75π ≈ 235.6 in^{2}
That's all there is to it. Well, let's throw in one more curveball to see if you really get it. (Get it? Because a curveball is a sphere, too!)
Sample Problem
The small circle intersects the sphere where its center is 6.2 feet away from the center of the sphere. If the radius of the small circle is 5 feet, what is the surface area of the sphere?
Whoa, whoa, whoa. What in the name of Ke$ha is going on here? Let's make sense out of all of this.
The distance between the centers of the circle and the sphere is 6.2 feet, which makes a right angle with the $5 footlong radius of the circle. If we make it a right triangle and look at the hypotenuse, it's the light at the end of this spherical tunnel: the radius of the sphere.
The Pythagorean theorem, like the Energizer bunny, keeps going on and on and on…
a^{2} + b^{2} = c^{2}
Substitute in the values we know.
(6.2 ft)^{2} + (5 ft)^{2} = c^{2}
And solve for the sphere's radius.
c = r ≈ 7.96 ft
Once we have that, surface area's a breeze.
SA = 4πr^{2}
SA = 4π(7.96 ft)^{2}
SA = 796 ft^{2}
Example 1
A big cantaloupe has a diameter of about 26 inches. How much surface area does its peel cover?

Example 2
You ate half the cantaloupe and now you're full. How much saran wrap will you need to cover the rest of the cantaloupe and save it for later? 
Example 3
Find the surface area of the solid.

Example 4
As part of your pottery class, you decide to make a bowl in the shape of a hemisphere. It's a perfect hemisphere, so clearly you rock at pottery. If you want to paint the entire thing blue, how much surface area will you cover? 
Exercise 1
If the diameter of a baseball is 3 inches, what is its surface area?
Exercise 2
The surface area of the average basketball is about 277.6 square inches. Find the radius of the basketball.
Exercise 3
Find the surface area of the solid.
Exercise 4
The "Bigger is Better" Ice Cream Company has made an even better ice cream cone, with a hemispherical waffle socket for the ice cream. What could be better than waffle sockets? How much waffle do they need to make these newandimproved ice cream cones for the Super Duper Ice Cream Scooper?
Exercise 5
The average diameter of the earth is about 7,913 miles. Using this measurement and assuming that the earth is perfectly spherical, what is its surface area in square miles?
Exercise 6
Find the surface area of the sphere.
Exercise 7
Which has a larger surface area: a cubic watermelon 1foot long edges or a spherical watermelon with a diameter of 1.5 feet?