TEKS: Chapter 112. Science See All Teacher Resources

112.20. Science, Grade 8, Adopted 2017.

(1) Grade 8 science is interdisciplinary in nature; however, much of the content focus is on earth and space science. National standards in science are organized as multi-grade blocks such as Grades 58 rather than individual grade levels. In order to follow the grade level format used in Texas, the various national standards are found among Grades 6, 7, and 8. Recurring themes are pervasive in sciences, mathematics, and technology. These ideas transcend disciplinary boundaries and include change and constancy, patterns, cycles, systems, models, and scale. The strands for Grade 8 include: 

  • (A) Scientific investigation and reasoning. 
    • (i) To develop a rich knowledge of science and the natural world, students must become familiar with different modes of scientific inquiry, rules of evidence, ways of formulating questions, ways of proposing explanations, and the diverse ways scientists study the natural world and propose explanations based on evidence derived from their work.
    • (ii) Scientific investigations are conducted for different reasons. All investigations require a research question, careful observations, data gathering, and analysis of the data to identify the patterns that will explain the findings. Descriptive investigations are used to explore new phenomena such as conducting surveys of organisms or measuring the abiotic components in a given habitat. Descriptive statistics include frequency, range, mean, median, and mode. A hypothesis is not required in a descriptive investigation. On the other hand, when conditions can be controlled in order to focus on a single variable, experimental research design is used to determine causation. Students should experience both types of investigations and understand that different scientific research questions require different research designs.
    • (iii) Scientific investigations are used to learn about the natural world. Students should understand that certain types of questions can be answered by investigations, and the methods, models, and conclusions built from these investigations change as new observations are made. Models of objects and events are tools for understanding the natural world and can show how systems work. Models have limitations and based on new discoveries are constantly being modified to more closely reflect the natural world. 
  • (B) Matter and energy. Students recognize that matter is composed of atoms. Students examine information on the Periodic Table to recognize that elements are grouped into families. In addition, students understand the basic concept of conservation of mass. Lab activities will allow students to demonstrate evidence of chemical reactions. They will use chemical formulas to identify substances. 
  • (C) Force, motion, and energy. Students experiment with the relationship between forces and motion through the study of Newton's three laws. Students learn how these forces relate to geologic processes and astronomical phenomena. In addition, students recognize that these laws are evident in everyday objects and activities. Mathematics is used to calculate speed using distance and time measurements. 
  • (D) Earth and space. Students identify the role of natural events in altering Earth systems. Cycles within Sun, Earth, and Moon systems are studied as students learn about seasons, tides, and lunar phases. Students learn that stars and galaxies are part of the universe. In addition, students use data to research scientific theories of the origin of the universe. Students will illustrate how Earth features change over time by plate tectonics. They will interpret land and erosional features on topographic maps and satellite views. Students learn how interactions in solar, weather, and ocean systems create changes in weather patterns and climate.
  • (E) Organisms and environments. In studies of living systems, students explore the interdependence between these systems. Students describe how biotic and abiotic factors affect the number of organisms and populations present in an ecosystem. In addition, students explore how organisms and their populations respond to short- and long-term environmental changes, including those caused by human activities. 

(2) Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not scientifically testable. 

 (3) Scientific hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power that have been tested over a wide variety of conditions become theories. Scientific theories are based on natural and physical phenomena and are capable of being tested by multiple, independent researchers. Students should know that scientific theories, unlike hypotheses, are well-established and highly reliable, but they may still be subject to change as new information and technologies are developed. Students should be able to distinguish between scientific decision-making methods and ethical/social decisions that involve the application of scientific information.  

(4) Statements containing the word "including" reference content that must be mastered, while those containing the phrase "such as" are intended as possible illustrative examples.