* Site-Outage Notice: Our engineering elves will be tweaking the Shmoop site from Monday, December 22 10:00 PM PST to Tuesday, December 23 5:00 AM PST. The site will be unavailable during this time.
Dismiss
© 2014 Shmoop University, Inc. All rights reserved.
Basic Geometry

Basic Geometry

As we discussed before, the three angles of a triangle always add up to 180°.

2 ABC Triangles

In each case m < A + m < B + m < C = 180 degrees . By the way, m < A means "the measurement of angle A".

To find the total number of degrees in any polygon, all we have to do is divide the shape into triangles. To do this start from any vertex and draw diagonals to all non-adjacent vertices.


Here is a quadrilateral.2 Quadrilaterals
If we draw all the diagonals from a vertex we get two triangles.
Each triangle has 180°, so 2 ×180° = 360° in a quadrilateral. 

Pentagon – 5 sidesPentagon3 triangles × 180° = 540°
Hexagon – 6 sidesHexagon4 triangles × 180° = 720°
Septagon – 7 sidesSeptagon5 triangles × 180° = 900°
Octagon – 8 sidesOctagon6 triangles × 180° = 1080°

Are you noticing a pattern? Turns out, the number of triangles formed by drawing the diagonals is two less than the number of sides. If we use the variable n to equal the number of sides, then we could find a formula to calculate the number of degrees in any polygon:

(n-2) x 180 degrees

Advertisement
Noodle's College Search
Advertisement
Advertisement
Advertisement